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Abstract

Heterogeneous information networks (HINs) are ubiquitous
in real-world applications. Due to the heterogeneity in HINS,
the typed edges may not fully align with each other. In or-
der to capture the semantic subtlety, we propose the con-
cept of aspects with each aspect being a unit representing
one underlying semantic facet. Meanwhile, network embed-
ding has emerged as a powerful method for learning net-
work representation, where the learned embedding can be
used as features in various downstream applications. There-
fore, we are motivated to propose a novel embedding learn-
ing framework—ASPEM—to preserve the semantic infor-
mation in HINs based on multiple aspects. Instead of pre-
serving information of the network in one semantic space,
ASPEM encapsulates information regarding each aspect in-
dividually. In order to select aspects for embedding purpose,
we further devise a solution for ASPEM based on dataset-
wide statistics. To corroborate the efficacy of ASPEM, we
conducted experiments on two real-words datasets with two
types of applications—classification and link prediction. Ex-
periment results demonstrate that ASPEM can outperform
baseline network embedding learning methods by consider-
ing multiple aspects, where the aspects can be selected from
the given HIN in an unsupervised manner.

Keywords: Heterogeneous information networks, network
embedding, graph mining, representation learning.

1 Introduction

In real-world applications, objects of different types inter-
act with each other, forming heterogeneous relations. Such
objects and relations, acting as strongly-typed nodes and
edges, constitute numerous heterogeneous information net-
works (HINs) [16, 19]. HINs have received increasing inter-
ests in the past decade due to its capability of retaining the
rich type information, as well as the accompanying wide ap-
plications such as recommender system [25], clustering [20],
and outlier detection [28]. As an example, the IMDb network

*The work was done when Huan Gui was a graduate student at UIUC.
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Figure 1: A toy example of node embeddings in an HIN.
The upper left of the figure depicts the interactions among
nodes, where users review movies and movies have various
attributes. Carlo likes both musicals and movies directed by
S. Spielberg. If all nodes were embedded to one space, Carlo
would be close to neither musical nor S. Spielberg due to the
dissimilarity between musical and S. Spielberg. However,
by embedding the aspect related to director and that related
to genre into separate spaces, Carlo could be close to S.
Spielberg in one space, and close to musical in another.

is an HIN containing information about users’ preferences
over movies and have five different node types: user, movie,
actor, director, and genre.

Meanwhile, network embedding has recently emerged
as a scalable unsupervised representation learning
method [4, 6, 12, 14, 21, 22, 24]. In particular, network em-
bedding learning projects the network into low-dimensional
space, where each node is represented using a correspond-
ing embedding vector and the relativity among nodes is
preserved. With the semantic information transcribed from
the networks, the embedding vectors can be directly used
as node features in various downstream applications. We
therefore use the two terms—the embedding of a node and
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the learned feature of a node—interchangeably in this paper.

The heterogeneity in HINs poses a specific challenge
for data mining and applied machine learning. We hence
propose to study the problem of learning embedding in HINs
with an emphasis on leveraging the rich and intrinsic type
information. There are multiple attempts in studying HIN
embedding or tackling specific application tasks using HIN
embedding [2, 3, 7, 21]. Though these studies formulate the
problem differently with respective optimization objectives,
they share a similar underlining philosophy: using a unified
objective function to embed all the nodes into one low-
dimensional space.

Embedding all the nodes into one low-dimensional
space, however, may lead to information loss. Take the
IMDb network as example, where users review movies based
on their preferences. Since each movie has several facets,
users may review movies with emphasis over different facets.
For instance, both Alice and Bob may like the movie Star
Wars, but Alice likes it because of Carrie Fisher (actor);
while Bob likes it because it is a fantasy movie (genre). Fur-
thermore, suppose user Carlo likes both movies directed by
Steven Spielberg and musicals. Due to the semantic dissim-
ilarity between Steven Spielberg and musical, if this HIN
were projected into one embedding space as visualized in the
upper part of Figure 1, musical (genre) and Steven Spielberg
(director) would be distant from each other, while the user
Carlo would be in the middle and close to neither of them.
Therefore, it is of interest to obtain an embedding that can
reflect Carlo’s preference for both musicals and Spielberg’s
movies. To this end, we are motivated to embed the network
into two distinct spaces: one for the aspect of genre infor-
mation whereas the other for that of director information. In
this case, Carlo could be close to musical (genre) in the first
space and close to Steven Spielberg (director) in the second
space as in the lower part of Figure 1.

In this paper, we propose a flexible embedding learning
framework—ASPEM—for HINs that mitigates the incom-
patibility among aspects via considering each aspect sepa-
rately. The use of aspects is motivated by the intuition that
very distinct relationship could exist between components of
a typed network, which has been observed in a special type
of HIN [18]. Moreover, we demonstrate the feasibility of
selecting a set of representative aspects for any HIN using
statistics of the network without additional supervision.

It is worth noting that most existing embedding learning
methodologies can be extended based on ASPEM using the
principle that different aspects should reside in different
embedding spaces. Therefore, ASPEM is a principled and
flexible framework that has the potential of inheriting the
merits of other embedding learning methods. To the best
of our knowledge, this is the first work to study the property
of multiple aspects in HIN embedding learning. Lastly, we
summarize our contributions as follows:

1. We provide a key insight regarding incompatibility in
HINSs that each HIN can have multiple aspects that do
not align with each other. We thereby identify that
embedding algorithms employing only one embedding
space may lose subtlety of the given HIN.

2. We propose a flexible HIN embedding framework,
named ASPEM, that can mitigate the incompatibility
among multiple aspects via considering the semantic
information regarding each aspect separately.

3. We propose an aspect selection method for ASPEM,
which demonstrates that a set of representative aspects
can be selected from any HIN using statistics of the
network without additional supervision.

4. We conduct quantitative experiments on two real-
world datasets with various evaluation tasks, which
validate the effectiveness of the proposed framework.

2 Related Work

Heterogeneous information networks. Heterogeneous in-
formation network (HIN) has been extensively studied as a
powerful and effective paradigm to model networked data
with rich and informative type information [16, 19]. Follow-
ing this paradigm, a great many applications such as clas-
sification, clustering, recommendation, and outlier detection
have been studied [16, 17, 19, 20, 25, 28]. However, many of
these existing works rely on feature engineering [20, 25, 28].
Meanwhile, we aim at proposing an unsupervised feature
learning method for general HINs that can serve as the basis
for different downstream applications.

Network embedding. Network embedding has recently
emerged as a representation learning approach for net-
works [6, 10, 12, 14, 22, 24]. Unlike traditional unsupervised
feature learning approaches [1, 15, 23] that typically arise
from the spectral properties of networks, recent advances
in network embedding are mostly based on local proper-
ties of networks and are therefore more scalable. The de-
signs of many homogeneous network embedding algorithms
[6, 12, 14, 22] trace to the skip-gram model [9] that aims to
learn word representations in natural language processing.
Beyond skip-gram, embedding methods for preserving cer-
tain other network properties have also been studied [10, 24].

Heterogeneous information network embedding. There
is a line of research on embedding learning for HINs, while
the necessity of modeling aspects of an HIN and embedding
them into different spaces has been rarely discussed. On top
of the LINE algorithm [22], Tang et al. propose to learn em-
bedding by traversing all edge types and sampling one edge
at a time for each edge type [21], where the use of type infor-
mation is shown to be instrumental. Chang et al. propose to
embed HIN with additional node features via deep architec-
tures [2], which does not suit for typical HINs consisting of
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only typed nodes and edges. Gui et al. devise an HIN embed-
ding algorithm to model a special type of HINs with hyper-
edges, which does not apply to general HINs [7]. More
recently, an HIN embedding algorithm is proposed, which
transcribes semantics in HINs by meta-paths [4]. However,
this work does not employ multiple embedding spaces for
different aspects. Moreover, it requires the involved meta-
paths to be specified as input, while our method is com-
pletely unsupervised and can automatically select aspect us-
ing statistics of the given HIN. Embedding in the context
of HIN has also been studied to address various application
tasks with additional supervision [3, 8, 11, 26, 27]. These
methods either yield features specific to given tasks or do
not generate node features, and therefore fall outside of the
scope of unsupervised HIN embedding that we study.

Additionally, we review the related work on multi-sense
embedding in the supplementary file for this paper, which
is related but cannot be directly applied to the task of HIN
embedding learning with aspects.

3 Problem Definition

In this section, we formally define the problem of learning
embedding from aspects of HINs and related notations.

DEFINITION 3.1. (HIN) An information network is a di-
rected graph G = (V, £) with a node type mapping ¢ : V —
T and an edge type mapping v : € — R. Particularly,
when the number of node types |T| > 1 or the number of
edge types |R| > 1, the network is called a heterogeneous
information network (HIN) [19].

In addition, when the network is weighted and directed,
we use Wéz) to denote the weight of an edge e € £ with
type r € R that goes out from node v and into node v.
D) and DI represent the outward degree of node u
(i.e., the sum of weights associated with all edges in type
r going outward from u) and the inward degree of node u
(i.e., the sum of weights associated with all edges in type r
going inward to u), respectively. For unweighted networks,
the degrees can be similarly defined. In case a network is
undirected, it can be converted to the directed case by simply
decomposing every edge to two directed edges with equal
weights and opposite directions.

Given the typed essence, an HIN can be abstracted using
a network schema G’ = (7, R) [19], which provides meta-
information regarding the node types and edge types in the
HINs. Figure 2a gives an example of the schema of a movie
reviewing network as an HIN.

DEFINITION 3.2. (ASPECT OF HIN) For a given HIN G
with network schema G = (T, R), an aspect of G is defined
as a subgraph of the network schema G. Foran aspect a, we
use T C T to denote the node types involved in this aspect,
and R® C R as the edge types involved in this aspect .

|| user ”—“ movie ||
genre
country

(b) Two aspects

(a) Schema

Figure 2: The schema and two aspects of an toy HIN with six
node types: movie, director, actor, genre, country, and user.

As an example, we illustrate two aspects from the
schema in Figure 2a: one on users’ preferences for movies
based on genre information (upper part in Figure 2b); and
the other on the semantics of movies based on the composite
information of directors, actors and their countries (lower
part in Figure 2b). If we denote A a set of representative
aspects generated by a certain method, where information
is compatible within each aspect and is not redundant across
different aspects, then an HIN with only one aspect will have
A =1,T*=T,and R* = R.

DEFINITION 3.3. (HIN EMBEDDING FROM ASPECTS)
Suppose that an HIN G = (V, £) and a set of representative
aspects A are given. For one aspect a € A, embedding
learning in HIN from one aspect a is to learn a node embed-
ding mapping f* : {u € V : ¢(u) € T} — RUD), where
d(a) is the embedding dimension for a and d(a) < |V|. For
all aspects in A and all nodes u € V, the problem of embed-
ding learning from aspects in HIN is to learn corresponding
feature vector f,, such that £, = @, 4. s(uyeTe Lir where
£ is the embedding of node w in aspect a.

We remark that, for nodes of different types, the correspond-
ing f,, might be of different dimensions by definition.

4 The ASPEM Framework

To address the problem of embedding learning from aspects
in HIN, we propose a flexible framework to distinguish the
semantic information regarding each aspect. Specifically,
for a node wu, the corresponding embedding vectors f are
inferred independently for different aspects in {a € A :
¢(u) € T*}. We name the new framework as ASPEM,
which is short for Aspect Embedding. ASPEM includes
three components: (i) selecting a set of representative aspects
for the HIN of interest, (ii) learning embedding vectors for
each aspect, and (iii) integrating embeddings from multiple
aspects. We introduce these components as follows.

4.1 Aspect Selection in HINs Since different aspects are

expected to reflect distinct semantic facets of an HIN, an as-
pect of representative capability should consist of compatible
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edge types in terms of the information carried by the edges.
Therefore, even without supervision from downstream appli-
cations, the incompatibility within each aspect can be lever-
aged to determine the quality of the aspect, and such incom-
patibility can be inferred from dataset-wide statistics.

Before introducing the proposed incompatibility mea-
sure, Inc(-), we first describe the properties that we posit a
proper measure should have as follows.

PROPERTY 4.1. (NON-NEGATIVITY) For any aspect a,
Inc(a) > 0.

PROPERTY 4.2. (MONOTONICITY) For two aspects a1 and
as, if a1 C ag, then Inc(ar) < Inc(ag).

PROPERTY 4.3. (CONVEXITY) For two aspects a1 and ao,
if their graph intersection has empty edge set, ie., E(a; N
ag) = @, then Inc(ay) + Inc(az) < Inc(a; U asg).

We note that the intuition of Property 4.3 is that the incom-
patibility arises from the co-existence of multiple types of
edges. As a result, generating an aspect by the union of a;
and ay could only introduce more incompatibility.

To propose our incompatibility measure, we start from
the simplest incompatibility-prone scenario: since the in-
compatibility arises from the co-existence of edge types, the
simplest incompatible-prone aspects are those with two edge
types joined by a common node type. In particular, an aspect
in this form can be uniquely determined by a schema-level

representation ¢y ﬂ> Ge h ¢, where ¢, ¢, ¢, € T are
(not necessarily distinct) node types and v;, ¥, € R are edge
types. Once the incompatibility measure Inc(-) is defined for
this scenario, it can then be generalized to any aspect a by

(4.1) Inc(a) = >

($1,%1,¢c,9r,¢r)Ca

InC(¢l ﬂ op h ¢r)7

where (¢, ¥, e, ¥y, &) C a represents enumerating all
such sub-aspects in aspect a. For undirected networks, we do
not diStinguiSh <¢l7 ¢l7 (bcv 7/%7 ¢r> and <¢r7 ¢r7 ¢><:7 1#17 ¢l>
in this enumeration process. Note that such generalization
meets the criteria in Property 4.2 and 4.3.

Incompatible edge types result in inconsistent informa-
tion. To reflect such intuition, we define the incompatibil-

ity measure on aspects of the form ¢; LN be Y, ¢, with
a Jaccard coefficient-based formulation over each node of
type ¢.—the node type that joins two edge types. Specifi-
cally, for node w of type ¢., we calculate the inconsistency
in information observed from v; and 1,. by

4.2)

S )z, max {PYL(PY) T PUL P"’l .

V(u) = e
Z¢(ﬂ):¢c min{P%;(Pg:)T,Pu} Pz }

where M¥: is the adjacency matrix of edge type 1; and P¥:
is M¥i after row-wise normalization. We remark that this

formulation, with a difference of minus 1, is essentially the
inverse of Jaccard coefficient over the one-hop neighbors
that u can reach via edge type v; and edge type v,.. The
inverse is taken since greater Jaccard coefficient implies
more similarity while we expect more inconsistency, and the
minus 1 is appended so that y(u) = 0 when P¥» = Py
i.e., no inconsistency if two edge types are identical. Lastly,
we average over all such nodes to find incompatibility score
of a simplest incompatible-prone aspect

|¢*\ 2 )

uePp

Inc(¢y KN @ IZ)—> Or) =

where ¢ is the set of all w in ¢, such that the denominator in
Eq. (4.2) is nonzero and v(u) is thereby well-defined. Note
that this definition satisfies Property 4.1.

To select a set A of representative aspects for given HIN
under any threshold § € R, (i) an aspect with incompat-
ible score greater than 6 is not eligible to be selected into
A, because it is not semantically consistent enough; (ii) in
case both aspects a; and as have incompatible score below
0 and a1 C as, we do not select a; into A. We note that
the second requirement is intended to keep A concise, so
that the information across different aspects is not redundant.
Note that when both computation resource and overfitting in
downstream application are not of concern, one may explore
the potential of trading in model size for gaining additional
performance boost by including both a7 and a5 to A.

We will demonstrate by experiments in Section 5 that
this proposed aspect selection method is effective in the
sense that (i) ASPEM built atop this method can outperform
baselines that do not model aspects; and (ii) the set of aspects
selected using this statistics-based unsupervised method can
outperform other comparable sets of aspects.

4.2 Embedding Learning from One Aspect To design
the embedding algorithm for one aspect, we extend the skip-
gram model [9] in an approach inspired by existing network
embedding studies [7, 21, 22]. We note that ASPEM is a
flexible framework that can be directly integrated with other
homogeneous network embedding methods [6, 12, 14, 24],
other than the adopted skip-gram—based approach, while still
enjoying the benefits of modeling aspects in HINSs.

For an aspect a € A, the associated node embeddings
can be denoted as {f{ } 4(.)c7=. Recall that 7 corresponds
to the set of node types included in the aspect a. We model
the probability of observing edge e with edge type r € R®
from node w to node v as

exp (f{j . fff)

43)  p(lu,r) = @y’
Z’U'EV: d(v")=¢(v) exp (fg : fv’)

This equation can be interpreted as the probability of observ-
ing v given u and the edge type r. On the other hand, the
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empirical conditional probability observed from aspect a is
(4.4) P (vlu,r) = W) /DY,

To obtain embeddings that reflect the network topology,
we seek to minimize the difference between the probability
distribution derived from the learned embedding Eq. (4.3)
and the empirical probability distribution observed in data
Eq. (4.4). Therefore, the embedding learning is reduced to
minimizing the following objective function

@5 0%=%" > APdE"(u,r),p"(fu,r)),

rE€R® uEVO (1)

where V() C V is the set of all nodes with outgoing type-

r edges, /\g) is the relative importance of node w in the
context of edges with type r, and d(-, ) is the KL-divergence.

Furthermore, we set ,\8“> x D,? (r) with )\Ef) sum up to 1 for
a given edge type r. Putting pieces together, Eq. (4.5) can be
rewritten as

1

a _ (r) a
46 O0'==3 o D W logp!(vlu.r),
rerRe uEVO(7.)

where Q) = Zu’v W,EZ). Consequently, the problem of
learning embedding from an aspect a € A is equivalent to
solving the following optimization problem

4.7 min 0°.

{f'::l}u:¢(u)€7—a

With this formulation, information from each aspect of
an HIN is transcribed into a different embedding space.

4.3 Compositing Node Embedding and Edge Embed-
ding By solving the optimization problem Eq. (4.7), we are
able to obtain a feature vector f for each node u € V¢
from the aspect a € A, and the final embedding for node
u is thereby given by the concatenation of the learned em-
bedding vectors from all aspects involving u, i.e., f, =
Daca: Sw)ETe f?. To characterize edges for applications
such as link prediction, we follow the method in existing
work [6] and define the edge embedding mapping g with do-
mainin V x Vas g(u,v) = uv = De4: p(u),6(0)e7e fu ©
f', where o is Hadamard product between two vectors of
commensurate dimensions. We discuss this choice of edge
embedding definition in the supplementary file, since it is
not the main focus or contribution of our paper.

4.4 Model Inference It is computationally expensive to
directly optimize the objective function Eq. (4.6) since the
partition function in Eq. (4.3) sums over all the nodes
in V. Therefore, we approximate it with negative sam-
pling [9] and resort to asynchronous stochastic gradient

term
H author ”—ﬂ paper ‘ H user ”—ﬂ movie ”—ﬂ director H
} venue
Lyear |

(a) DBLP (b) IMDb
Figure 3: The network schemas of DBLP and IMDb.

descent (ASGD) [13] for optimization as with the com-
mon practice in skip-gram-based embedding methods [6,
12, 21, 22]. For each iteration in ASGD, we first sam-
ple an edge type r from R?; then sample an edge e =
(u,v) of type r with the sampling probability proportional
to quf,); and finally obtain negative samples from the noise

3/4
distribution P,(lr)(v) o [D{,(r)

objective for each iteration is therefore logo(f? - £7) +
S E,, p loga(—£2 - £9), where o(-) is the sigmoid

k3

[9]. The optimization

function o(z) = exp(z)/(1 + exp(x)). This optimization
procedure shares the same spirit with some existing network
embedding algorithms, and one may refer to the network em-
bedding paper by Tang et al. [22] for further details.

5 Experiments

In order to provide evidence for the efficacy of ASPEM,
we experiment with two real-world HINs in this section.
Specifically, the learned embeddings are fed into two types
of downstream applications—multi-class classification and
link prediction—to answer the following two questions:

Q1 Does exploiting aspects in HIN embedding learning
help better capture the semantics of typed networks in
both link prediction and classification tasks?

Q2 Without supervision, is it feasible to select a set of rep-
resentative aspects just using dataset-wide statistics.

5.1 Data Description We use two publicly available real-
world HIN datasets: DBLP and IMDb. DBLP is a biblio-
graphical information network in the computer science do-
main'. There are six types of nodes in the network: author
(A), paper (P), reference (R), term (T), venue (V), and year
(Y), where reference corresponds to papers being referred by
other papers. The terms are extracted and released by Chen
et al. [3]. The edge types include: author writing paper, pa-
per citing reference, paper containing term, paper publishing
in venue, and paper publishing in year. The corresponding
network schema is depicted in Figure 3a. Note that we distin-
guish the node type of reference, so that a paper have a differ-
ent embedding when acting as a reference. IMDDb is an HIN
built by linking the movie-attribute information from IMDb

mttps://aminer.org/citation
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Table 1: Basic statistics for the DBLP and IMDD networks.

DELP Author Paper Reference Term Venue | Year
1,003,836 | 1,756,680 | 693,406 | 402,687 | 7,528 | 62
User Movie Actor Director | Genre
IMDB 943 1,360 42,275 918 23

and the user-reviewing-movie relationship from MovieLens-
100K.? There are five types of nodes in the network: user
(U), movie (M), actor (A), director (D), and genre (G). The
edge types include: user reviewing movie, actor featuring in
movie, director directing movie, and movie being of genre.
The network schema can be found in Figure 3b. We summa-
rize the statistics of the datasets in Table 1.

We use the node types to represent an aspect in these
two HINs. For example, APY in the DBLP network refers
to the aspect involving author, paper, and year, and UMA in
IMDDb represents the aspect involving user, movie, and actor.
The schema of each aspect can be easily inferred based on
the holistic network schema, as shown in Figure 3.

5.2 Baseline Methods and Experiment Setting To an-
swer Q1 at the beginning of the section, we compare ASPEM
against several unsupervised embedding methods. SVD [5]:
a matrix factorization based method, where singular value
decomposition is performed on the adjacent matrix of the
homogeneous network and the first d singular vectors are
taken as the node embeddings of the network, where d is the
dimension of the embedding. DeepWalk [12]: a homoge-
neous network embedding method, which samples multiple
walks starting from each node, and then applies the skip-
gram model to learn embedding. LINE [22]: a homoge-
neous network embedding method, which treats the neigh-
bors of a node as its context, and then applies the skip-gram
model to learn embedding. OneSpace: as a heterogeneous
network embedding method, OneSpace serves as a direct
comparison against the proposed ASPEM algorithm to val-
idate the utility of embedding different aspects into multi-
ple spaces. This method is given by the proposed ASPEM
framework with the full HIN schema as the only selected as-
pect. We note that the OneSpace method embeds all nodes
into only one low-dimensional space. In the special case of
HINs with star-schema, OneSpace is identical to PTE pro-
posed in [21]. We remark that DeepWalk is identical to
node2vec [6] under default hyperparameters.

For the baselines developed for homogeneous networks,
we treat the HIN as a homogeneous network by neglecting
the node types. Additionally, we apply the same downstream
learners onto the embeddings yielded by different embed-
ding methods for fair comparison.

Parameters. While ASPEM is capable of using different di-
mensions for different aspects, we employ the same dimen-
sion for all aspects out of simplicity. In other words, we set
d(a1) = ... = d(aj4)) = d,a1,...,a.4 € A. In particu-

Zhttps://grouplens.org/datasets/movielens/100k/

Table 2: Classification accuracy in two DBLP tasks.

Dataset/task DBLP-group DBLP-area
Classifier LR [ SVM [ LR [ SVM
SVD 0.7566 | 0.7550 | 0.8158 | 0.8008
DeepWalk | 0.6629 | 0.7077 | 0.8308 | 0.8390
LINE 0.7037 | 0.7314 | 0.8526 | 0.8540
OneSpace | 0.7685 | 0.8333 | 0.8758 | 0.8731

AsPEM [ 0.8425 | 0.8889 [ 0.8786 | 0.8813

lar, we set d = 100 for DBLP and d = 10 for IMDb. For
fair comparison, we experiment with two dimensions for ev-
ery baseline method: (i) the dimension of one aspect used
by ASPEM (i.e., d) and (ii) the total dimension of all aspects
employed by ASPEM (i.e., |A| - d). We report the better re-
sult between the two choices of dimension for every baseline
method. 1,000 million edges are sampled to learn the em-
bedding on DBLP, and 100 million edges are sampled on
IMDb. The number of negative samples is set to 5 following
the common practice in network embedding [22].

Selected aspects.  Since all our experiments on DBLP
involve the node type author (A), we set the threshold for
incompatibility measure 6 to be the smallest possible value
such that all node types co-exist with the node type author
(A) in at least one aspect eligible to be selected to A as
per the two requirements discussed in Section 4.1. As a
result, 6 is set to be 221267 on DBLP, and the set of selected
representative aspects, A, is {APRTV, APT}. Similarly for
IMDb, considering that all its experiments involve the node
type user (U), € is set to be 1927.68, and the set of selected
representative aspects, A, is {UMA, UMD, UMG}.

The detailed presentation on the calculations and figures
involving threshold and aspect selection for both HINs can
be found in the supplementary file for this paper.

5.3 Classification For classification tasks, we use the
learned embeddings as node features and then classify the
nodes into different categories using off-the-shelf classifiers.
The classification performance is evaluated using accuracy.
For a set of concerned nodes X and node z € X, de-
note [(x) the predicted label of z and denote [*(x) the
ground truth label. Then accuracy is defined as Acc. =
@] Lweex 0(1(z) = 1*(z)), where |X] is the cardinality
of X and §(-) is the indicator function.

Due to the availability of trustworthy class labels, we
perform two classification tasks on DBLP. The first one
(DBLP-group) is on the research group affiliation of each
author. We consider four research groups led by Christos
Faloutsos, Dan Roth, Jiawei Han, and Michael I. Jordan. 116
authors in the dataset are labeled with such group affiliation.
The second label set (DBLP-area) is on the primary research
area of authors. 4,040 authors are manually labeled in four
research areas: data mining, database, machine learning, and
artificial intelligence [20].
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Table 3: Link prediction results on DBLP and IMDb.

Dataset DBLP

IMDb

Metrics | PQ1 | P@3 | PQ10 [ RQl | R@3 [ RQ10

pal | Pa@3 | PQ10 | Rl | R@3 [ RQ10

SVD 0.6648 | 0.5164 | 0.2274 | 0.2939 | 0.6178 | 0.8512 | 0.2470 | 0.2474 | 0.2249 | 0.0152 | 0.0445 | 0.1343

DeepWalk | 0.7395 | 0.5297 | 0.2303 | 0.3268 | 0.6329 | 0.8622 | 0.3499 | 0.3605 | 0.3416 | 0.0253 | 0.0774 | 0.2236

LINE 0.7404 | 0.5367 | 0.2299 | 0.3267 | 0.6375 | 0.8596 | 0.4782 | 0.4701 | 0.4130 | 0.0379 | 0.1133 | 0.3137

OneSpace | 0.7440 | 0.5381 | 0.2279 | 0.3301 | 0.6401 | 0.8519 | 0.4665 | 0.4386 | 0.3852 | 0.0435 | 0.1146 | 0.3038

ASPEM | 0.7724 [ 05645 | 0.2356 | 0.3479 | 0.6749 | 0.8810 | 0.5090 | 0.4853 | 0.4219 [ 0.0464 | 0.1296 | 0.3420

We experiment with two widely used classifiers. One
is logistic regression (LR) and the other is support vector
machine (SVM). Both classifiers are based on the liblinear
implementation.> The classification accuracy for different
methods are reported in Table 2.

The proposed ASPEM method outperformed all four
baselines in both tasks with either of the two downstream
learners applied. In particular, ASPEM yielded better results
than OneSpace, which confirms our intuition that there exists
incompatibility among aspects, and learning node embed-
dings independently from different aspects can better pre-
serves the semantics of an HIN. In addition, we observed that
the classification results of ASPEM were significant better
than OneSpace in research group classification; while the im-
provement of ASPEM over OneSpace was less significant in
research area classification. This can be partially explained
by that the label of research groups is more relevant to tem-
poral information compared with that of research area, and
the presence of the aspect APY in ASPEM may therefore be
more informative for the research group classification task.

Based on the results in Table 2, another observation
is that the embedding methods distinguishing node types
(OneSpace and ASPEM) performed better than those not
considering node types. This observation is in line with pre-
vious studies [7], and can be explained by the heterogeneity
of node types in HINs. The nodes of different types in HINs
have different properties, such as degrees distribution. Sim-
ply ignoring such information can lead to information loss.

5.4 Link Prediction On experiments with link predic-
tion essence, we perform author identification on the
DBLP dataset, and user review prediction on the IMDb
dataset. Precision and recall are used for evaluating these
tasks.  Precision at k (PQk) is defined as PQk =

# of true Instances a Pk and recall at k (RQk) is defined as

__ # of true instances at top k
Rak = # of total true instances * o .
We describe the key facts on deriving features for link

prediction, and provide further details in the supplementary
file. DBLP—The author identification task on DBLP aims
at re-identifying the authors of an anonymized paper, where
the reference, term, venue, and year information is still
available. Since papers in the test set do not appear in
the training set, their embeddings are hence not available.

3https://www.csie.ntu.edu.tw/ cjlin/liblinear/

Table 4: Link prediction results (PQ1) using only one edge.

Edge embedding used | AR [ AT [ AV [ AY
Aspect APRTVY (OneSpace) | 0.6933 | 0.6723 [ 0.6501 [ 0.3166
Aspect APRTV 0.7566 | 0.6977 | 0.6878 | ——
Aspect APR 0.6071 | —— —_— —
Aspect APT — 106802 | —— —_—
Aspect APV —_— — | 05836 | ——
Aspect APY — e — 103187

Therefore, we use the edge embedding of an author and
each attribute of a paper (reference, term, venue, or year) to
infer whether this author writes this paper. Specifically, for
both train and test sets, we derive the feature of an author—
paper pair by (i) first computing the edge embedding of the
concerned author and each attribute of the concerned paper;
(ii) then averaging all edge embedding vectors with the same
edge type (author-reference, author—term, author—venue, or
author—year) to find four edge-type-specific vectors; (iii)
finally deriving the feature vector for an author—paper pair by
concatenating of the previous four averaged edge embedding
vectors. IMDb—The user review prediction task on IMDb
aims at predicting which user reviews a movie. Features for
user—movie pairs are likewise derived as with author—paper
pairs in DBLP.

On top of the derived node pair features as well as la-
bels in the training set, logistic regression is trained for in-
ferring the existence of edges in the test set. We choose the
scikit-learn* implementation with the SAG solver for logis-
tic regression—different from that used for classification—
because the SAG solver converges faster than liblinear, and
the author identification task on DBLP has a huge number of
author—paper pairs as training instances.

From the main results on link prediction presented in
Table 3, we have observation consistent with the classifi-
cation tasks that OneSpace and ASPEM had better perfor-
mance than the methods without considering type informa-
tion. Also, ASPEM outperformed OneSpace.

Predictive power of single edge embedding. In order to
better understand the mechanism of ASPEM in the link pre-
diction tasks, we dissect each aspect and study the predictive
power of a single edge embedding from one aspect. Specif-
ically, we use each edge embedding over an author-attribute
pair from one aspect for link prediction. Due to space limita-

“http://scikit-learn.org/stable/
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Table 5: Link prediction results using different 2-
combinations aspects on DBLP.

Metrics | P@1 | P@3 | PQI0 | RGI | R@3 | R@I0
{APTV, APRY} [ 0.7522 [ 0.5476 | 0.2303 | 0.3362 | 0.6524 | 0.8611
{APRV, APTY} | 0.7347 | 0.5327 | 0.2257 | 0.3271 | 0.6327 | 0.8425
{APRT, APVY} | 0.7579 | 0.5556 | 0.2332 | 0.3385 | 0.6614 | 0.8708
{APTVY, APR} [ 0.7384 | 0.5360 | 0.2277 | 0.3280 [ 0.6372 | 0.8499
{APRVY, APT} | 0.7353 | 0.5356 | 0.2271 | 0.3263 | 0.6355 | 0.8474
{APRTY, APV} [ 0.7366 | 0.5362 | 0.2277 | 0.3274 | 0.6364 | 0.8492
{APRTV, APY} [ 0.7724 | 0.5645 | 0.2356 | 0.3479 [ 0.6749 | 0.8810

tion, we focus on the link prediction task on DBLP, because
it has the largest number of available labels and can thereby
yield most reliable conclusions. The experimental results are
presented in Table 4, where the rows correspond to the aspect
being used for embedding learning and the columns corre-
spond to the edge embedding being used for link prediction.

It can be seen that using the aspect APRTV was better
than using the bigger aspect APRTVY for all edge embed-
dings, where APRTVY was identical to the whole network
schema. Such result provides evidence that for certain HIN
datasets, using all the information in the network may be less
effective than using partial information (i.e., one aspect). We
interpret this result as: on the one hand, an author may focus
on certain research field that cites certain classic references
(R), uses certain terminologies (T), and publishes papers in
certain venues (V), i.e., R, T, and V correlate to some extent;
on the other hand, an author may be actively publishing pa-
pers in a certain range of years (Y). However, the information
regarding R, T, and V do not align well with Y. As a result,
embedding R, T, V, and Y together into the same space (as in
the OneSpace model) led to worse embedding quality even
though more types of data were used. This result further
consolidated our insight that HIN can have multiple aspects,
and one should embed aspects with different semantics into
distinct spaces.

To conclude, the results for classification and link pre-
diction give an affirmative answer to Q1—Distinguishing the
information from semantically different aspects can benefit
HIN embedding learning.

5.5 The Impact of Aspect Selection In the previous sec-
tion, we have shown that the aspect selection method pro-
posed in Section 4.1 can effectively support the ASPEM
framework to outperform embedding methods that do not
model aspects in HINs. In this section, we further address
Q2 and demonstrate the set of representative aspects ASPEM
selected using the proposed method is of good quality com-
pared with other selections of aspects.

To this end, we again use the link prediction on DBLP
as the downstream evaluation task, and experiment with
all sets of aspect that are comparable to {APRTV, APY}.
Specifically, each of these comparable sets of aspects (i) has
two aspects, and (ii) author and paper appear in both aspects,
and other node types exist in exactly one of the two aspects.
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Figure 4: (a) and (b) depict the precision and recall against
various dimensions employed for the embedding space. (c)
and (d) give the precision and recall against various choices
of sampled edge numbers.

From the results presented in Table 5, it can be seen that
the set of representative aspects selected by our proposed
method, {APRTV, APY}, achieved the best performance
among all comparable aspect selections. Note that all the
6 inferior sets of aspects have inconsistency score, Inc(-),
greater than the threshold we set, which can be verified from
the numbers provided in the supplementary file. This result
further consolidates the feasibility of selecting representative
aspects for any HIN solely by dataset-wide statistics without
the need of additional task-specific supervision.

5.6 Hyperparameter Study We vary two hyperparame-
ters, one at each time, that play important roles in embedding
learning: dimension of embedding spaces and the number of
edges sampled in the training phase. All other parameters
are set following Section 5.2.

The performance in the link prediction task on DBLP is
presented in Figure 4. It can be seen that model performance
tended to be better as either the dimension of embedding
spaces or the number of edges sampled grew, and the growth
became less drastic after dimension reached 100 and number
of edges sampled reached 1000 million. Such a pattern
agrees with the results in other similar studies [6, 7, 22].

6 Conclusions and Future Work

In this paper, we study the problem of embedding learning in
HINs. Particularly, we make the key observation that there
are multiple aspects in heterogeneous information networks
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and there might be incompatibility among different aspects.
Therefore, we take advantage of the information encapsu-
lated in each aspect and propose ASPEM—a new embedding
learning framework from aspects, which comes with an un-
supervised method to select a set of representative aspects
from an HIN. We conducted experiments to corroborate the
efficacy of ASPEM in better representing the semantic infor-
mation in HINs.

To focus on the utility of aspects in HIN embedding,
ASPEM is designed to be simple and flexible with each as-
pect embedded independently. For future work, one may ex-
plore optimizing the embeddings for all the aspects jointly, in
hope of preserving more intrinsic information among nodes
and further boost performance in downstream applications.
Additionally, it is of interest to investigate into aspect selec-
tion methods when supervision is further provided.
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